
Here a completely contained GNOME runs VLC, and two Chrome containers. All have working hardware acceleration. Notice

that p a v u c o n t r o l  deals with the sound output of VLC as if it were native despite that p a v u c o n t r o l  and VLC are in

separate containers. Similarly, notice that GNOME composition works throughout.

The Atomic Desktop
With it still being early days for containers as a deployment technology, by far the most common use-case for containers we at

Red Hat have seen is distributing "canned" runtime environments. This can speed up the on-boarding process for new or re-

allocated coders, sometimes putting developers weeks ahead of competitors. It's a powerful workflow, but one that holds

containers at arms reach behind v a g r a n t  u p s, virtualization, or possibly even other operating systems. For those of us who

prefer greater immersion, the question is: can this idea be take further? Can whole development environments---nay---the entire

"at seat" experience be contained? With just a bit of work, the answer is a resounding yes. In fact, the "Atomic Desktop" enables

exciting new workflows and control over the desktop experience previously impossible.

GNOME and First Steps
When I first considered taking the #containerchallenge, my end goal was to replicate and eventually improve on my current

GLSL development environment:

A hardware accelerated desktop and shell

https://twitter.com/gtrevorjay/status/611698689917059072
https://en.wikipedia.org/wiki/OpenGL_Shading_Language


hardware accelerated web browsing with sound in both FireFox and Chrome

DRMed Internet Radio (Q104.3 is essential to real productivity)

Access to Windows through virtualization for further compatibility testing.

Ideally, I'd be able to run different browsers in different containers but retain hardware acceleration and hardware sound mixing.

This last point is very important to me because I rely heavily on the system bell and being able to hear my iPhone's alerts as part

of my workstation's sound mix.

Getting Started

Before I walk through how I was able to meet and exceed my requirements with just the standard Atomic install, I should

mention that I will be covering the ideal case. Just as they do not contain, containers also do not abstract. When you ask that

contained applications interact with specific hardware (such as a particular GPU), you are necessarily making your container less

generic. There are ways to mitigate this, which I will cover. For the moment though, I'll consider the easy case of on-board Intel

acceleration and a generically pulseaudio supported soundcard. Ease of a contained "seat" experience is yet another reason it's

important to use open-source friendly hardware.

There is also much room for automation within the procedure's I'm currently using. Part of why I have shied away from---for

example---using the atomic command is that I will often customize the commands used here depending on what I need at any

particular moment. Such is one of the flexible advantages of a contained desktop.

Throughout my example Dockerfiles, I'll add and use my t j a y  user account. You can simply substitute your own username.

Preparing Atomic

To start simply:

Installed Atomic on metal via the Anaconda installer

s u d o  r p m - o s t r e e  u p g r a d e

s u d o  s y s t e m c t l  r e b o o t

as usual.

Retrieving a Base Image

1. c u r l  - o  ' F e d o r a - D o c k e r - B a s e - 2 2 - 2 0 1 5 0 5 2 1 . x 8 6 _ 6 4 . t a r . x z '

' h t t p : / / d o w n l o a d . f e d o r a p r o j e c t . o r g / p u b / f e d o r a / l i n u x / r e l e a s e s / 2 2 / D o c k e r / x 8 6 _ 6 4 / F e d o r a -

D o c k e r - B a s e - 2 2 - 2 0 1 5 0 5 2 1 . x 8 6 _ 6 4 . t a r . x z '

http://www.q1043.com/main.html
http://opensource.com/business/14/7/docker-security-selinux


2. m d 5 s u m  F e d o r a - D o c k e r - B a s e - 2 2 - 2 0 1 5 0 5 2 1 . x 8 6 _ 6 4 . t a r . x z

3. x z  - d  F e d o r a - D o c k e r - B a s e - 2 2 - 2 0 1 5 0 5 2 1 . x 8 6 _ 6 4 . t a r . x z

4. s u d o  d o c k e r  l o a d  <  F e d o r a - D o c k e r - B a s e - 2 2 - 2 0 1 5 0 5 2 1 . x 8 6 _ 6 4 . t a r

Of course, compare the hash in step 2 to a published hash whose signature you have verified.

Preparing an RPM-cache

For reasons that will become apparent, the key to a smooth Atomic Desktop is a local RPM-cache. I begin by building the

following Dockerfile, which I will tag as a "squid" image:

f r o m  F e d o r a - D o c k e r - B a s e - 2 2 - 2 0 1 5 0 5 2 1 . x 8 6 _ 6 4

R U N  d n f  - y  u p d a t e  & &  d n f  - y  c l e a n  a l l

R U N  d n f  - y  i n s t a l l  s q u i d  & &  d n f  - y  c l e a n  a l l

R U N  a d d u s e r  t j a y  ;  u s e r m o d  - a  - G  s q u i d  t j a y

R U N  c h m o d  g + r w  / v a r / s p o o l / s q u i d /  ;  c h m o d  g + r w  - R  / v a r / l o g / s q u i d

R U N  c a t  / e t c / s q u i d / s q u i d . c o n f  |  s e d  ' s / # c a c h e _ d i r . * / c a c h e _ d i r  u f s  \ / v a r \ / s p o o l \ / s q u i d  2 5 6

0 0  1 6  2 5 6 / g '  >  / e t c / s q u i d / t m p . c o n f  ;  e c h o  " m a x i m u m _ o b j e c t _ s i z e  1 0 2 4  M B "  > >  / e t c / s q u i d / t m

p . c o n f  ;  e c h o  " p i d _ f i l e n a m e  / h o m e / t j a y / s q u i d . p i d "  > >  / e t c / s q u i d / t m p . c o n f  ;  m v  - f  / e t c / s q u

i d / t m p . c o n f  / e t c / s q u i d / s q u i d . c o n f

You will need a persistent directory (I use / h o m e / t j a y / s h a r e d / c o n f i g s / s q u i d ) to exist on the host (ideally as the same

UID/GID) and be labeled as s v i r t _ s a n d b o x _ f i l e _ t . Once it does, switch to a new virtual terminal and run the squid

image:

s u d o  d o c k e r  r u n  - i  - t  - v  / h o m e / t j a y / s h a r e d / c o n f i g s / s q u i d : / v a r / s p o o l / s q u i d  - u  t j a y

s q u i d  s q u i d  - N C d 1

Preparing the GNOME and Chrome images

use s u d o  d o c k e r  p s  |  g r e p  - i  s q u i d  to find the name of the running s q u i d  (for example

d r u n k _ s a m m e t ).

use s u d o  d o c k e r  i n s p e c t  d r u n k _ s a m m e t  |  g r e p  I P A d d r e s s  to find the IP address.

substitute that IP for 172.17.0.1 in the following Dockerfiles:

Build and tag this first file as g n o m e .

f r o m  F e d o r a - D o c k e r - B a s e - 2 2 - 2 0 1 5 0 5 2 1 . x 8 6 _ 6 4



R U N  e c h o  " p r o x y = h t t p : / / 1 7 2 . 1 7 . 0 . 1 : 3 1 2 8 "  > >  / e t c / d n f / d n f . c o n f

R U N  f o r  I  i n  / e t c / y u m . r e p o s . d / * . r e p o ;  d o  c a t  $ I  |  s e d  ' s / m e t a l i n k / # m e t a l i n k / g '  |  s e d  

' s / # b a s e u r l / b a s e u r l / g '  |  s e d  ' s / d o w n l o a d . f e d o r a p r o j e c t . o r g \ / p u b \ / f e d o r a \ / l i n u x / f t p . i i n e

t . n e t . a u \ / l i n u x \ / r e d h a t - f e d o r a / g '  >  / e t c / y u m . r e p o s . d / t m p . r e p o ;  m v  - f  / e t c / y u m . r e p o s . d / t m

p . r e p o  $ I ;  d o n e

R U N  d n f  - y  u p d a t e  & &  d n f  - y  c l e a n  a l l

R U N  d n f  - y  i n s t a l l  X o r g  g l x - u t i l s  g n o m e - s h e l l  p u l s e a u d i o  p a s s w d  s u d o  s c r e e n  a l s a - u t i l s  g u

a k e  @ g n o m e  g n o m e - t w e a k - t o o l  x b a c k l i g h t  d o c k e r - i o  a t o m i c  p u l s e a u d i o - u t i l s  x c a l i b  s o c a t  p a v

u c o n t r o l  x s c r e e n s a v e r  l i b X x f 8 6 v m  l i b X r a n d r  & &  d n f  - y  c l e a n  a l l

R U N  ( c d  / l i b / s y s t e m d / s y s t e m / s y s i n i t . t a r g e t . w a n t s / ;  f o r  i  i n  * ;  d o  [  $ i  = =  s y s t e m d - t m p f i l e

s - s e t u p . s e r v i c e  ]  | |  r m  - f  $ i ;  d o n e ) ;  r m  - f  / l i b / s y s t e m d / s y s t e m / m u l t i - u s e r . t a r g e t . w a n t

s / * ; r m  - f  / e t c / s y s t e m d / s y s t e m / * . w a n t s / * ; r m  - f  / l i b / s y s t e m d / s y s t e m / l o c a l - f s . t a r g e t . w a n t

s / * ;  r m  - f  / l i b / s y s t e m d / s y s t e m / s o c k e t s . t a r g e t . w a n t s / * u d e v * ;  r m  - f  / l i b / s y s t e m d / s y s t e m / s o c

k e t s . t a r g e t . w a n t s / * i n i t c t l * ;  r m  - f  / l i b / s y s t e m d / s y s t e m / b a s i c . t a r g e t . w a n t s / * ; r m  - f  / l i b / s y

s t e m d / s y s t e m / a n a c o n d a . t a r g e t . w a n t s / * ;

R U N  r m  - r f  / e t c / s y s t e m d / s y s t e m / s y s t e m d - r e m o u n t - f s . s e r v i c e ;  r m  - r f  / e t c / s y s t e m d / s y s t e m / s y s

t e m d - j o u r n a l d . s o c k e t ;  r m  - r f  / e t c / s y s t e m d / s y s t e m / s y s t e m d - j o u r n a l d . s e r v i c e ;  r m  - r f  / e t c / s y

s t e m d / s y s t e m / s y s t e m d - j o u r n a l d - d e v - l o g . s o c k e t ;  r m  - r f  / e t c / s y s t e m d / s y s t e m / s y s t e m d - j o u r n a l

d - a u d i t . s o c k e t ;  r m  - r f  / e t c / s y s t e m d / s y s t e m / s y s t e m d - j o u r n a l - f l u s h . s e r v i c e ;  l n  - s  / d e v / n u l l  

/ e t c / s y s t e m d / s y s t e m / s y s t e m d - r e m o u n t - f s . s e r v i c e ;  l n  - s  / d e v / n u l l  / e t c / s y s t e m d / s y s t e m / s y s t e

m d - j o u r n a l d . s o c k e t ;  l n  - s  / d e v / n u l l  / e t c / s y s t e m d / s y s t e m / s y s t e m d - j o u r n a l d . s e r v i c e ;  l n  - s  

/ d e v / n u l l  / e t c / s y s t e m d / s y s t e m / s y s t e m d - j o u r n a l d - d e v - l o g . s o c k e t ;  l n  - s  / d e v / n u l l  / e t c / s y s t e

m d / s y s t e m / s y s t e m d - j o u r n a l d - a u d i t . s o c k e t ;  l n  - s  / d e v / n u l l  / e t c / s y s t e m d / s y s t e m / s y s t e m d - j o u r

n a l - f l u s h . s e r v i c e ;  r m  - r f  / e t c / s y s t e m d / s y s t e m / u p o w e r . s e r v i c e ;  r m  - r f  / e t c / s y s t e m d / s y s t e

m / s y s t e m d - l o g i n d . s e r v i c e ;  l n  - s  / u s r / l i b / s y s t e m d / s y s t e m / u p o w e r . s e r v i c e  / e t c / s y s t e m d / s y s t e

m / u p o w e r . s e r v i c e ;  l n  - s  / u s r / l i b / s y s t e m d / s y s t e m / s y s t e m d - l o g i n d . s e r v i c e  / e t c / s y s t e m d / s y s t e

m / s y s t e m d - l o g i n d . s e r v i c e ;

# A D D  x f l u x  / u s r / b i n / x f l u x

# R U N  e c h o  - e  ' # ! / b i n / b a s h \ n x f l u x  - l  ' " ' " ' - 2 7 . 4 6 9 5 3 ' " ' " '  - g  ' " ' " ' 1 5 3 . 0 2 7 8 2 ' " ' " ' '  >  / u s r / b i

n / x f l u x . s h

# R U N  c h m o d  a + x  / u s r / b i n / x f l u x *

R U N  d n f  - y  r e m o v e  P a c k a g e K i t - c o m m a n d - n o t - f o u n d  & &  d n f  - y  c l e a n  a l l

R U N  m k d i r  - p  / r u n / u d e v ;  m k d i r  - p  / r u n / d b u s ;  m k d i r  - p  / r u n / s y s t e m d / s y s t e m

R U N  c p  / u s r / s h a r e / z o n e i n f o / A u s t r a l i a / B r i s b a n e  / e t c / l o c a l t i m e

R U N  a d d u s e r  t j a y  ;  u s e r m o d  - a  - G  v i d e o  t j a y  ;  u s e r m o d  - a  - G  a u d i o  t j a y

R U N  s e d  - e  ' s / ^ r o o t . * / r o o t \ t A L L = ( A L L ) \ t A L L \ n t j a y \ t A L L = ( A L L ) \ t A L L / g '  / e t c / s u d o e r s  >  / e t c / s

u d o e r s . n e w  ;  m v  / e t c / s u d o e r s . n e w  / e t c / s u d o e r s

R U N  c a t  / e t c / b a s h r c  |  s e d  ' s / \ ( . * P R O M P T _ C O M M A N D = \ ) . * 0 3 3 k . * / \ 1 ' " ' " ' p r i n t f  " \ \ 0 3



3 ] 0 ; % s @ % s : % s \ \ 0 3 3 \ \ \ \ "  " $ { U S E R } "  " $ { H O S T N A M E % % . * } "  " $ { P W D \ / # $ H O M E \ / ~ } " ' " ' " ' / g '  >  / e t c / t m p  

;  m v  / e t c / t m p  / e t c / b a s h r c

# R U N  d n f  - y  i n s t a l l  x o r g - x 1 1 - d r i v e r s  m e s a - d r i - d r i v e r s  & &  d n f  - y  c l e a n  a l l

This second file, build and tag as c h r o m e . You will need a Chrome RPM in the build directory for the A D D  command to

work.

f r o m  F e d o r a - D o c k e r - B a s e - 2 2 - 2 0 1 5 0 5 2 1 . x 8 6 _ 6 4

R U N  e c h o  " p r o x y = h t t p : / / 1 7 2 . 1 7 . 0 . 1 : 3 1 2 8 "  > >  / e t c / d n f / d n f . c o n f

R U N  f o r  I  i n  / e t c / y u m . r e p o s . d / * . r e p o ;  d o  c a t  $ I  |  s e d  ' s / m e t a l i n k / # m e t a l i n k / g '  |  s e d  

' s / # b a s e u r l / b a s e u r l / g '  |  s e d  ' s / d o w n l o a d . f e d o r a p r o j e c t . o r g \ / p u b \ / f e d o r a \ / l i n u x / f t p . i i n e

t . n e t . a u \ / l i n u x \ / r e d h a t - f e d o r a / g '  >  / e t c / y u m . r e p o s . d / t m p . r e p o ;  m v  - f  / e t c / y u m . r e p o s . d / t m

p . r e p o  $ I ;  d o n e

R U N  d n f  - y  u p d a t e  & &  d n f  - y  c l e a n  a l l

R U N  d n f  - y  i n s t a l l   p u l s e a u d i o  p a v u c o n t r o l  o p e n v p n  t a r  & &  d n f  c l e a n  a l l

R U N  c p  / u s r / s h a r e / z o n e i n f o / A u s t r a l i a / B r i s b a n e  / e t c / l o c a l t i m e

R U N  a d d u s e r  t j a y  ;  u s e r m o d  - a  - G  v i d e o  t j a y  ;  u s e r m o d  - a  - G  a u d i o  t j a y

R U N  c u r l  - o  ' / h o m e / t j a y / d o t j s - 1 . 0 . 2 . t a r . g z '  ' h t t p s : / / p y p i . p y t h o n . o r g / p a c k a g e s / s o u r c e / d / d o

t j s / d o t j s - 1 . 0 . 2 . t a r . g z '                          R U N  t a r  x z f  / h o m e / t j a y / d o t j s - 1 . 0 . 2 . t a r . g z  

- C  / h o m e / t j a y

R U N  c h o w n  t j a y : t j a y  - R  / h o m e / t j a y / d o t j s - 1 . 0 . 2

A D D  g o o g l e - c h r o m e - s t a b l e _ c u r r e n t _ x 8 6 _ 6 4 . r p m  / h o m e / t j a y / g o o g l e - c h r o m e - s t a b l e _ c u r r e n t _ x 8 6 _ 6

4 . r p m

R U N  d n f  - y  i n s t a l l  / h o m e / t j a y / g o o g l e - c h r o m e - s t a b l e _ c u r r e n t _ x 8 6 _ 6 4 . r p m  & &  d n f  c l e a n  a l l

# R U N  d n f  - y  i n s t a l l  x o r g - x 1 1 - d r i v e r s  m e s a - d r i - d r i v e r s  & &  d n f  - y  c l e a n  a l l

Notes on the Build Files

There are a couple of tricks to note here. The first is that---as mentioned---they add a proxy setting to dnf. As part of that, the

first part of the Dockerfile forces a particular Fedora mirror in each . r e p o  file. This ensures repeat pulls will have the same

URL. As it's highly doubtful the iiNet mirror is your most performant, you'll want to customize this portion of the Dockerfile

along with the username and timezone information.

The g n o m e  Dockerfile is more interesting. It concentrates on stripping down systemd to the bare essentials (including disabling

journald) and ensuring that all of the directory structures systemd expects are present (at least, the ones we won't be injecting at

runtime). Key to ensuring hardware acceleration and mixing is possible is that our container user is a member of both the audio

and video groups, and that these GIDs match the Atomic host (which they will if you use Fedora and Fedora Atomic). Notice

http://www.iinet.net.au/home/


that both files have a commented dnf command that would install x11 packages. More on this later.

Create a Shared / t m p

To facilitate X11 composition, we need a Docker hosted / t m p  directory that our containers can share. You might think that we

could just share the host / t m p , but that won't work. The reason is that just as root on a Fedora machine isn't really root

(because of SELinux considerations) - - p r i v i l e g e d  on Atomic is not completely privileged. The relevant restriction here is

that containers aren't allowed to arbitrarily open socket files. We can bypass this restriction by hosting / t m p  in a Docker

volume instead of on the host.

To create the volume, we simply start and log out of an appropriately named container:

s u d o  d o c k e r  r u n  - i  - t  - v  / t m p  - - n a m e  c o m m o n _ t m p  F e d o r a - D o c k e r - B a s e - 2 2 -

2 0 1 5 0 5 2 1 . x 8 6 _ 6 4  / b i n / b a s h

Starting a GNOME Environment

Enough prepping, let's get ready to start GNOME!

First, we'll need to start an interactive session in a virtual terminal. Some of the prep can be automated but the session has to be

interactive so that it can take proper control of TTYs and other resources. Speaking of which, a word of warning: having a

container subsume control of the "real" machine (i.e. the keyboard, mouse) means that we have to make sure to properly close

out the container, less we create a situation where physical login is impossible.

Again, the GNOME container is hardware dependent, but a common run command is:

s u d o  d o c k e r  r u n  - i  - t  - - p r i v i l e g e d  - v  / d e v / d r i : / d e v / d r i  - v  / d e v / s n d : / d e v / s n d  - v

/ d e v / s h m : / d e v / s h m  - v  / v a r / r u n / u d e v : / r u n / u d e v  - v  / v a r / r u n / d o c k e r : / r u n / d o c k e r  - v

/ v a r / r u n / d o c k e r . s o c k : / r u n / d o c k e r . s o c k  - v  / d e v / i n p u t : / d e v / i n p u t  - v

/ s y s / f s / c g r o u p : / s y s / f s / c g r o u p  - - v o l u m e s - f r o m  c o m m o n _ t m p  - - l i n k  d r u n k _ s a m m e t : r p m c a c h e

g n o m e  / b i n / b a s h

where d r u n k _ s a m m e t  is the name of the running squid.

If you just built g n o m e  the proxy IP is correct. Otherwise, use vi to edit / e t c / d n f / d n f . c o n f 's proxy line to read:

p r o x y = h t t p : / / r p m c a c h e : 3 1 2 8 .

Again, for the simple case of an Intel GPU, install the appropriate drivers now:



d n f  - y  i n s t a l l  x o r g - x 1 1 - d r i v e r s  m e s a - d r i - d r i v e r s

Now you're ready to start systemd:

/ u s r / l i b / s y s t e m d / s y s t e m d  - - s y s t e m  &

And to widen the s y s t e m _ b u s _ s o c k e t  permissions:

c h m o d  a + w  / v a r / r u n / d b u s / s y s t e m _ b u s _ s o c k e t

Now you can start X:

X  &

This will almost surely take control away from your current virtual console, so you'll need to cycle through to find it again

(CTRL+ALT+F1, CTRL+ALT+F2, etc.).

Once you're back at the console that you used to start X, you're ready to setup and become your preprepared user (in my case

t j a y ). Don't forget to set a password for them.

p a s s w d  t j a y

s u  t j a y  -

Now the moment of truth:

e x p o r t  D I S P L A Y = " : 0 "

g n o m e - s e s s i o n

If everything went correctly, you can now find the X virtual console (again, CTRL+ALT+F1, CTRL+ALT+F2, etc.) and watch

as GNOME starts up. From now on, these instructions are meant to be followed from within GNOME.

Starting Chrome

Once you've gone through the GNOME starting slides (setting your language, etc.). You're ready to try launching a hardware

accelerated container. Launch and pull-up the Guake console (the default key for Guake is F12).

First let's make a note of the current g n o m e  container's / e t c / m a c h i n e - i d  and pulse entry:

s u d o  c a t  / e t c / m a c h i n e - i d

s u d o  l s  / t m p / p u l s e - *



Then we're ready to launch Chrome. Again, assuming simple Intel hardware:

d o c k e r  r u n  - i  - t  - - p r i v i l e g e d  - v  / d e v / d r i : / d e v / d r i  - v  / d e v / s n d : / d e v / s n d  - v

/ d e v / s h m : / d e v / s h m  - - i p c = c o n t a i n e r : e c s t a t i c _ s i n o u s s i  - - l i n k  d r u n k _ s a m m e t : r p m c a c h e  - -

v o l u m e s - f r o m  c o m m o n _ t m p  c h r o m e  / b i n / b a s h

where e c s t a t i c _ s i n o u s s i  is the running g n o m e  and d r u n k _ s a m m e t  is the running s q u i d . Merging the containers

IPC namespaces - - i p c : c o n t a i n e r : . . .  is necessary so that they can make sense of each others / d e v / s h m  entries.

Why did we launch the container as root? So that we can install the appropriate drivers and customize our / e t c / m a c h i n e -

i d :

d n f  - y  i n s t a l l  x o r g - x 1 1 - d r i v e r s  m e s a - d r i - d r i v e r s

e c h o  ' 2 5 7 5 9 6 e 5 b 5 3 2 4 d 1 5 9 4 c d 8 5 6 1 3 9 e d 4 e d 7 '  >  / e t c / m a c h i n e - i d

where 257596e5b5324d1594cd856139ed4ed7 is the machine-id of the running g n o m e  container. Once we've got the drivers

installed, we're ready to become our user:

e x e c  s u  t j a y  -

And to align the pulseaudio settings with the g n o m e  container:

m k d i r  - p  ~ / . c o n f i g / p u l s e

l n  - s  / t m p / p u l s e - Y N 0 k D c Y O N U h Z  ~ / . c o n f i g / p u l s e / 2 5 7 5 9 6 e 5 b 5 3 2 4 d 1 5 9 4 c d 8 5 6 1 3 9 e d 4 e d 7 -

r u n t i m e

where 257596e5b5324d1594cd856139ed4ed7 is the machine-id and pulse-YN0kDcYONUhZ is the pulse session name from

earlier.

Now all that remains is:

e x p o r t  D I S P L A Y = " : 0 "

g o o g l e - c h r o m e

Hide the Guake terminal with F12, and watch as Chrome opens in the GNOME desktop. If you visit: c h r o m e : / / g p u  you

should see that full 3D acceleration is enabled! If you visit a site with sound, you should see that the GNOME mixer respects it as

a normal application.

Just to avoid confusion, at you can also now stop the u p o w e r  and N e t w o r k M a n a g e r  services that GNOME started (since



they aren't touching real hardware). In a new Guake tab:

s u d o  s y s t e m c t l  s t o p  u p o w e r

s u d o  s y s t e m c t l  s t o p  N e t w o r k M a n a g e r

Overview of the Atomic Desktop
Before diving into some approaches to dealing with temperamental hardware, let's cover some of the implications.

Advantages and Possible Workflows

I can now (through Guake tabs themselves or screens) start up multiple docker containers from within my contained GNOME

environment. I can make them full hardware accelerated peers (as I did with Chrome) or I can instead share X11 over a port and

tell the containers about it via - - l i n k  facilitating e x p o r t  D I S P L A Y = " x 1 1 : 0 "  or similar just working. Similarly, I can do

the same for pulseaudio. I can share it as a first class peer or use the usual Docker networking setups.

I can "snapshot" my running g n o m e  environment, I can freeze and unfreeze contained applications. With the squid cache,

exploratory building is a snap. I certainly shouldn't be taken as a role model when it comes to workflows (I prefer the CLI over

all else), but I would like to note a number of advantages.

Semi-Generic Containers for Most Applications
For almost all of my long running applications, I have a preprepared container. These include containers like:

Chrome

Firefox

Libvirtd

virsh

mutt, postfix, fetchmail, procmail and recoll

shell (this is my exploratory base including utilities like wget, mosh, vim, etc.)

video (VLC, ffmpeg, ghb, etc.)

Notice how the Dockerfile for Chrome includes openvpn? This is so that it can be launched with - - p r i v i l e g e d  and create

it's own TUN device for just it to use. Almost all of my containers are similarly set to be launched in a number of different ways

all emphasizing isolation. It use to always bother my that all of my DNS queries were going over my work VPN, now my

routing can be per application.

A Working Set of Fresh Applications
Following the philosophy of installing nothing extra on the host, I also tend not to create Dockerfiles unless a task is nearly



omnipresent. By installing applications in a preprepared base just when I need them, I let the s q u i d  cache manage my hard

drive space for me (currently as per the Dockerfile I've assigned it 50 gigs). Thus I automatically only pay longer install times

for apps I use less. Further, because I pull them through the squid cache, I always use the latest version of applications with no

extra effort on my part.

No Fear Updates
For applications I install just-in-time, I always am using the newest version. For apps that I choose to host in preprepared

containers, updating is still easy and risk-free. All I need do is rebuild and tag with a testing postfix (for example g n o m e

becomes g n o m e p ). Then I can take the new g n o m e p  container for a spin and if it works then "promote" it to g n o m e .

Immutable and Temporary by Default
My Desktop and Downloads folder used to constantly fill with disorganized sundry. Now by default all of my recent file working

set lifecycles are tied to a container. I have to explicitly think about what I might want to move to the host (or alternatively if I

want to make a snapshop of a container).

Now I tend to create a fresh container with "Developer Tools" and snapshot it for the duration of the exploratory portion of a

project. Once things have become more organized, I simply commit the files the the host in an organized way (or to github) and

then wipe the container images.

Explicit Configuration
Using the binding facility of Docker, It's easy to mix and match different configurations of a container at runtime. For example,

here is a typical command to launch a shell:

s u d o  d o c k e r  r u n  - i  - t  - v  / h o m e / t j a y / s h a r e d / c o n f i g s / k e y s : / h o m e / t j a y / k e y s  - v

/ h o m e / t j a y / s h a r e d / c o n f i g s / p r o w l . p y : / u s r / b i n / p r o w l . p y  - v

/ h o m e / t j a y / s h a r e d / c o n f i g s / v i m r c : / h o m e / t j a y / . v i m r c  - - l i n k  f u r i o u s _ d a r w i n : x 1 1  - - l i n k

r e v e r e n t _ h y p a t i a : r p m c a c h e  - e  ' D I S P L A Y = x 1 1 : 1 7 '  - u  t j a y  s h e l l  / b i n / b a s h

Both the keys directory and p r o w l . p y  contain sensitive information (API and SSH keys) but need not be housed in the

container itself.

Hardware Specific Concerns

Poorly Supported Hardware

The procedures I've described so far work well on my laptop. However, at the office I---unfortunately---have an aging Dell

Precision 380 as a workstation. This model has an Nvidia card requiring the outdated and spotily support 304 series of drivers.

As I mentioned before, any container that wishes to make use of hardware acceleration will need access to a copy of the



appropriate drivers (though not necessarily kernel modules). To keep containers my containers as generic as possible, I've

decided to leverage my RPM cache and always install the drivers at runtime. This is probably the easiest approach until such time

as Docker supports mix-ins.

However, even this approach doesn't work completely for the Precision 380. For one, the default boot behavior loads an

incompatible framebuffer driver. Second, the precompiled 304 drivers often lag behind the kernel available on Atomic. Third,

unlike the Intel drivers, the Nvidia ones create a new device. Without getting into too much hardware specific detail, here is how

I approached this issue:

Replacing the normal Atomic r h g b  boot option with n o m o d e s e t  to prevent the loading of a graphics driver.

using mknod to create the appropriate Nvidia devices on the host so that I can add them to containers (unfortunately,

Docker has a limited ability to create devices or files that don't already exist on the host)

Building an RPM build environment container that I use to build the akmod versions of the drivers for a given kernel.

The "output" directory of this container is a shared volume that I import into my other containers, so I can install them

at runtime.

In addition to loading the shared drivers, I also issue manually issue an i n s m o d  n v i d i a . k o  command in the

g n o m e  container before starting X. This sets up all of the needed kernel modules.

Dynamic Concerns

While the g n o m e  container has access to the udev devices, it isn't actually running the udev service. The host is. This means

that for certain reconfiguration events (such as docking) it is best to stop gnome, X, and the container and then restart them. I

could run udev and power management inside a container, but I prefer not to as I sometimes want these features before I start

Docker.

Conclusion
So far, I've experimented with running a fully contained desktop using both the minimal spin of Fedora and the Fedora flavor of

Atomic with great success. I can share my Dockerfiles between my laptop and desktop to get a truly unified experience and I

now have more control over how my applications work than ever.


