
The Interface into Atomic App

Dusty Mabe
Software Container Engineer
2015-11-11

 What is the goal of AtomicApp ?

● Main goal is to run nuleculized applications
● Most likely multi-container

● Supports many different orchestration engines (providers)

● More features in the future?
● Possibly
● For now let's concentrate on today

Checkpoint

● Problems we are trying to solve
● Atomic CLI + Atomic App
● Pain Points
● 1st possibility of the day

● Use AtomicApp software in a more direct manner
(at least from the user perspective)

● 2nd possibility of the day
● Don't embed AtomicApp software in Nuleculized

applications.

Problems we are trying to solve: UX

● Atomic App upstream developers are running
into decisions we need to make based on the
user experience.

● These decisions need to improve user
experience, but also incorporate Red Hat's
strategy around container management.

● Who is the user?
● Consumers of Nulecule Applications
● Developers of Nulecule Applications
● Developers of Atomic App software (upstream)

UX: Consumers of Nulecule Applications

● Consumers need to run/configure apps:
● atomic run --opt3=`--answers=/path/to/answers.conf

mariadb-app

● Do they care what is going on underneath?
● Maybe, but probably not

● Priority as target audience for UX decisions:
● High; need to make it easy to deploy/configure

complex applications

UX: Developers of Nulecule Applications

● ISV developers need to:
● Understand how the software works
● Be able to develop/test/debug
● Report bugs
● `atomicapp install/run/stop/crazyverb helloapache`

● Do they care what is going on underneath?
● Yes, but right now it's not easy to understand

● Priority as target audience for UX decisions:
● High; need to make it easy to understand/develop

nulecule/AtomicApps

UX: Developers of Atomic App software

● Atomic App developers need to:
● Understand how the software works
● Be able to develop/test/debug
● Report/Fix Bugs

● Do they care what is going on underneath?
● Absolutely, but right now it's not easy to understand

● Priority as target audience for UX decisions:
● Low, but may affect community involvement

An example UX decision we've made

● Don't unpack files to or rely on cwd
● Not obvious to user that files are going to get put in their

current working directory when they run atomic run app
● Fixed by now putting files into either

● Specified destination
● mkdir /tmp/fooapp &&

atomic install --opt3=”--destination=/tmp/fooapp” <image>
● Automatically generated destination

● atomic install <image> --> files in /var/lib/atomicapp/$RANDOM
● Has implications on usage via Atomic CLI
● Since you always have to pass an image to Atomic CLI

● To run “already installed/modified app”:
● atomic run --opt3=”--destination=/tmp/fooapp” <image>
● vs atomicapp run /tmp/fooapp

Trade one bad UX for Another

● Before – unexpected things happen to system
● unpack files into and use cwd

● atomic install helloapache
● atomic run hellopache

● Bad: puts the files in whatever directory you are in
● Bad: If user already provided image name then why

provide it again?

● After – more complex command line
● unpack files to generated or user defined directory

● atomic install --opt3=”--destination=/tmp/foo” helloapache
● atomic run --opt3=”--destination=/tmp/foo” helloapache

● Bad: confusing: what is opt3? why provide dest twice?
● Still Bad: Why provide image name again?

Problems we are trying to solve: confusion

● Understanding what is going on behind the
scenes is confusing.
● Atomic App software is embedded in ISV containers

● people get confused on why.. one ISV was basing all of
their binary application containers on the Atomic App
base container, rather than just having the single
metadata container be based on it

● Atomic CLI is used to execute docker run command
against container provided by ISV

● Atomic App is completely hidden
● this is perceived as a benefit(app knows how to run itself)
● but, really confuses people when they are first wrapping

their heads around it

Checkpoint

● Problems we are trying to solve
● Atomic CLI + Atomic App
● Pain Points
● 1st possibility of the day

● Use AtomicApp software in a more direct manner
(at least from the user perspective)

● 2nd possibility of the day
● Don't embed AtomicApp software in Nuleculized

applications.

Where does Atomic CLI fit in?

● Atomic CLI
● Used to execute run labels on container images

● RUN/INSTALL/STOP/UNINSTALL labels
● Ex: `atomic run cockpit/ws` works pretty well

● In this context:
● Used as a gateway into running Atomic Apps
● A lot of similarities in “verbage” with Atomic App

Should we be running AtomicApp through
Atomic CLI?

● It depends
● Is Atomic App simple enough (and will it stay simple

enough) that the Atomic CLI workflow will be good
enough

● Are Atomic App and Atomic CLI similar enough that
all of Atomic App's workflow can be modeled
through Atomic CLI? Or are they too different?

● Let's compare them and see

Comparison - INSTALL

● Atomic CLI Install
● Run an install script (typically create systemd

unit file to start a service on boot)
● Atomic App CLI Install

● Pull down metadata from container and
evaluate Nulecule to find and pull down all
dependencies (Nested Nulecules)

● Probably should be called “unpack”

Comparison - RUN

● Atomic CLI Run
● Run a container via an image RUN label.

● AtomicApp CLI Run
● Download metadata, evaluate Nulecule and

deploy containers in chosen provider
(kube,openshift,etc)

Comparison - STOP

Atomic CLI Stop
● Docs say that it will simply run STOP label

from provided container image.
● Code actually expects the arg provided to be

the name of a running container.
● bug?

● Atomic App CLI Stop
● Evaluate Nulecule and determine which

deployed artifacts need to be stopped.

Are they that different?

● They are very similar but are also different
● Is it better to use AtomicApp software on it's

own or to have Atomic be the universal
interface into containerized applications?
● Let's explore some pain points first

Checkpoint

● Problems we are trying to solve
● Atomic CLI + Atomic App
● Pain Points
● 1st possibility of the day

● Use AtomicApp software in a more direct manner
(at least from the user perspective)

● 2nd possibility of the day
● Don't embed AtomicApp software in Nuleculized

applications.

Pain Points – Labels
● Atomic CLI supports some execution labels

(INSTALL,RUN,STOP,etc).
● Adding features in the form of new “verbs” is

not optimal
● We are somewhat limited in the labels that exist
● Possible solution: generic execution labels in

Atomic CLI
● upstream is open to accept PR for this, something like:

● atomic exe --label=UNPACK <image>

Pain Points – Passing options

● If you want to provide options to Atomic App via
Atomic CLI you must work through the “OPT”
variables in order to pull it off.
● atomic run --opt3=”--provider=docker

--answers=/tmp/answers.conf” helloapache
● atomicapp run --provider=docker

--answers=/tmp/answers.conf helloapache

● OPT* variables are odd for users
● AtomicApp itself could improve here by making

options not be positional

Pain Points – Developer Workflow

● For developing in Atomic App upstream, to
develop a change and test you must:
● Edit Code
● Build AtomicApp base container
● Build app Nulecule container from base container
● Use `atomic` to run/test it and repeat.

● This is a long process, leads to shortcuts:
● Running Atomic App directly from source
● Running Atomic App base container against Nulecule

● We can and will improve by enhancing our
automated tests.

Checkpoint

● Problems we are trying to solve
● Atomic CLI + Atomic App
● Pain Points
● 1st possibility of the day

● Use AtomicApp software in a more direct manner
(at least from the user perspective)

● 2nd possibility of the day
● Don't embed AtomicApp software in Nuleculized

applications.

Possibility #1 - use Atomic App CLI more
directly (install atomicapp via atomic install)

● With the pain points mentioned there are things
we can do to make them better in the existing
model, but is it worth considering using Atomic
App more directly?
● atomic install projectatomic/atomicapp
● atomicapp install --destination=./ helloapache
● cp answers.conf.sample answers.conf
● sed -i s/kubernetes/docker/ answers.conf
● atomicapp run ./
● atomicapp stop ./

Possibility #1 - use Atomic App CLI more
directly (via an alias, if `atomic` not installed)

● OR we could use an alias (NOT PRETTY):
● alias atomicapp='docker run -it --rm --privileged -v $

(pwd):/atomicapp -v /run:/run -v /:/host --net=host
--name atomicapp projectatomic/atomicapp:$
{ATOMICAPPVERSION-latest}'

● alias=`atomic run atomicapp`
● ATOMICAPPVERSION=0.2.1
● atomicapp install --destination=./ helloapache
● cp answers.conf.sample answers.conf
● sed -i s/kubernetes/docker/ answers.conf
● atomicapp run ./
● atomicapp stop ./

Possibility #1 - use Atomic App CLI more
directly (via first class support in `atomic`)

● OR we could add first class support for Atomic
App in Atomic CLI
● atomic app install --destination=./ helloapache

● app submodule will run atomicapp base container
against helloapache image

● cp answers.conf.sample answers.conf
● sed -i s/kubernetes/docker/ answers.conf
● atomic app run ./
● atomic app stop ./
● atomic app crazyverb ./

Possibility #1 - use Atomic App CLI more
directly (comparison to today)

● For comparison this is how it looks with `atomic`
● atomic install --opt3=”--destination=./” helloapache
● cp answers.conf.sample answers.conf
● sed -i s/kubernetes/docker/ answers.conf
● atomic run --opt3=”--destination=./” helloapache
● atomic stop --opt3=”--destination=./” helloapache

● ^^^ THERE IS A BUG HERE IF WE WANT STOP TO WORK

Checkpoint

● Problems we are trying to solve
● Atomic CLI + Atomic App
● Pain Points
● 1st possibility of the day

● Use AtomicApp software in a more direct manner
(at least from the user perspective)

● 2nd possibility of the day
● Don't embed AtomicApp software in Nuleculized

applications.

Possibility #2 – don't embed in nulecule
containers

● If we adopt a model of using Atomic App
“directly” then we could stop embedding Atomic
App in the metadata containers that are known
as Atomic Apps today
● No more “FROM projectatomic/atomicapp:0.2.1”

Possibility #2 – don't embed in nulecule
containers
● Benefits:

● The containers now just contain Nulecule files and
artifacts

● smaller footprint=less concern for security vulnerabilities
● Don't have to rebuild these nulecule containers when a

new version of atomicapp comes out.
● The delivered container image is now just a

standalone Nulecule. It is no longer an AtomicApp
● This means that any implementation of the Nulecule

specification can consume these containers and deploy a
nuleculeized application.

● If we come up with a go version of atomicapp we can
consume the same ISV artifacts.

Possibility #2 – don't embed in nulecule
containers
● Benefits:

● I want to emphasize this point from previous slide:
● “This means that any implementation of the

Nulecule specification can consume these
containers and deploy a nuleculeized
application.”

● If we come up with a go version of atomicapp we
can consume the same ISV artifacts.

● If we come up with a libnulecule or libatomicapp
library then openshift might be able to use that in
the future.

● A single Nulecule metadata container can be
used by Atomic App base containers from RHEL,
CentOS, Fedora, Ubuntu etc..

Possibility #2 – don't embed in nulecule
containers
● Benefits:

● The version of atomicapp that is running is no
longer dependent on the upstream app developer.

● In other words the Nulecules don't “rot”. If you have the
latest version of atomicapp on your system then you will
be using the latest version to launch all of your
atomicapps.

● People who are scripting the cli (like cockpit right now)
don't have to worry about somebody throwing an old
atomicapp at them with incompatible cli interface.

● Less confusion – right now people often get
confused about what is actually running

Possibility #2 – don't embed in nulecule
containers

● Negatives:
● The version of atomicapp that is running is no

longer dependent on the upstream app developer.
● Depends on what version of atomicapp is called by the

user's system.
● We can workaround this – 1 user can easily choose what version

of atomicapp to run OR 2 – we can embed requested version
information into the Nulecule containers and have atomicapp
respect that.

● Can no longer do `atomic run helloapache` :(

Summary
● The Atomic App user/developer experience can be

improved.
● The architecture of how Nulecules/AtomicApps

are built and executed often leads to confusion
among developers

● How can we improve?
● Fixing the way it is now?
● Using Atomic App more directly?
● Run Atomic App separately from Nulecules.

● Nulecules are now independent of implementation

What can Atomic App project do better?

● We need to improve our communication within
the platform as well as to our users.

● We need to work with Atomic CLI closer
upstream to get changes in that will help our
user's experiences.

Thoughts?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

